

PROGRAMMING THE RADIO

IMPORTANT: BEFORE PROGRAMMING FOR THE FIRST TIME THE RADIO RECEIVER, DELETE ALL THE RECORDED TEST CODES.

SEE FUNCTION C AT THE BOTTOM OF THIS CHAPTER

IN CASE OF TRANSMITTERS WITH DIP-SWITCHES. SET THE MICROSWITCHES TO CREATE A NEW PERSONAL CODE. (For security reasons avoid to set the microswitches all in OFF or all in ON position).

IN CASE OF HIT TYPE TRANSMITTERS, THE ABOVE MENTIONED PROCEDURE IS NOT NECESSARY BECAUSE EACH TRANSMITTER COMES WITH ITS OWN CODE RANDOM.

DISPLAYING STORED CODES

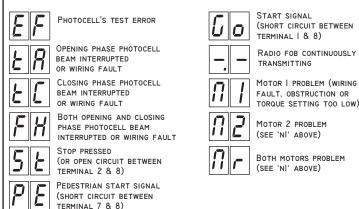
- Press the **button A** repeatedly until the display shows r \ddot{n} Press button B until the display shows r
- The display will now cycle trough each stored code from 01 to 50. TO ERASE A SINGLE STORES CODE
 - Press button D when the number of the code to be removed is displayed

STORING NEW REMOTE CONTROL CODE

- Press the **button A** repeatedly until the display shows r Rτc.
 - Press button B until the display shows C C
 - Press and hold the remote control button until a dot appears on the display (this means that the receiver is ready to store a new code) and simultaneously press button C to store the new code

STORING NEW REMOTE CONTROL CODE with STOP function

- Press the **button A** repeatedly until the display shows r
- Press button B until the display shows [P
- Press and hold the remote control button until the dot appears on the display and simultaneously press button C to store the new code.


STORING NEW REMOTE CONTROL CODE with PEDESTRIAN function

- Press the **button A** repeatedly until the display shows
- Press button B until the display shows Pd
- Press and hold the remote control button until the dot appears on the display and simultaneously press button C to store the new code

DELETING ALL STORED CODES

- Press the **button A** repeatedly until the display shows r R
- Press button B until the display shows r
- Press and hold button D until the display shows / This indicates that all the codes have been erased

SELF-DIAGNOSIS DISPLAY MESSAGES

Method 1 = STANDARD Method 2 = SEQUENTIAL

Warning:

Before powering up and programming the control unit refer to the wiring scheme and then:

- 1 Check that the motor connections are correct
- 2 Check that the photocell connections are correct
- Important:

If the photocells are not installed in closing phase, you must link terminals 3 and 9.

- If the photocells are not installed in opening phase, you must link terminals 4 and 9.
- 3 Check that the control connections are correct. Important:
- If an emergency stop button is not fitted, you must link terminals 2 and 8.
- 4 Use the motor release key supplied to disengage the electric motor from the mechanical drive; then close the gate and re-engage.
- 5 Power the control unit up

STANDARD PROGRAMMING PROCESS (Method 1)

- a) Give a START signal by either turning the key s:witch or by another control device (terminals 1 and 8)
- b) Wait until the gate has finished a complete (pre-programmed) OPEN/STOP/WAIT/CLOSE cycle.
- c) Give another START signal and not which parameter need adjusting
- d) Press button A on the control unit to select the Parameters menu.
- e) Press button B repeatedly until the display shows the parameter that you need to change
- f) Use buttons C and D to change or confirm each parameter as necessary **IMPORTANT**: press button B repeatedly until the display shows $5 \parallel$ and then press button C to save the changes.

Example:

D

Increase the Motor 1 working time by 2 seconds

With the control board switched on, ensure that the display shows:		
Press button A (steps thru the top menu)	until the display shows $\rightarrow P R$	
Press button B (steps thru the sub-menu)	until the display shows 🛛 🗕 🎵 /	
Wait until the display shows the currents set	ting, for example → 21	
Press button C twice	until the display shows \rightarrow 23	
Press button B repeatedly	until the display shows 🏻 — 🗲 🖞	
Press and hold button C until the relays clic	k and the display shows	

SPECIAL FUNCTIONS

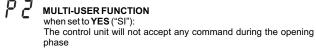
AUTOMATIC CLOSING FUNCTION

- an impulse during the opening phase will stop the motors until another impulse is received
- an impulse during the closing phase will stop and reverse the motors

When set to NO, the step-by-step operation is active:

- 1st impulse starts the opening phase
- 2nd impulse stops the opening phase
- 3rd impulse starts the closing phase

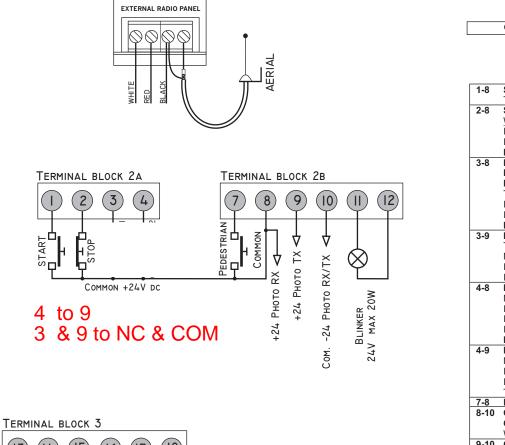
PROGRAMMING THE Q60A PARAMETERS

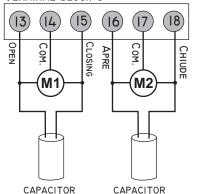


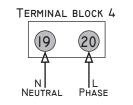
SEQUENTIAL programming for gates with only one leaf

- Press button A (steps thru the top menu) until the display shows a)
- Press button **B** (steps thru the sub-menu) until the display shows \iint Give a **START** signal: the leaf starts opening and the display shows \iint b)
- c)
- Wait until the leaf has done the 90% of the opening cycle and then give another d) **START** signal: the display shows r and the deceleration phase begins
- Wait 4/5 seconds after the opening cycle has completely finished and give a e) START signal.
- The display shows LP, the control unit has stored the opening and deceleration f) times and is now calculating the "stay open" time
- g) Give a START signals to stop calculating the "stay open" time and start the CLOSING CYCLĚ.
- g) When the closing cycle has completely finished, the control unit automatically exits from the sequential programming process and all the working times have been saved.

SEQUENTIAL programming for gates with two leaf


- a) Press button A (steps thru the top menu) until the display shows $\frac{1}{5}$
- b) Press button B (steps thru the sub-menu) until the display shows 2
- c) Give a START signal:
- The leaf 1 starts opening and the display shows []]
- d) Wait until the leaf 1 has done the 90% of the opening cycle and then give another **START** signal: the display shows r and the deceleration phase of **leaf 1** begins
- Wait 4/5 seconds after the leaf 1 has completely opened and give another START e) signal. The display shows $\int d^2$ and the **leaf 2** starts opening
- f) Wait until the leaf 2 has done the 90% of the opening cycle and then give another **START** signal: the display shows r_c^2 and the deceleration phase of **leaf 2** begins
- Wait 4/5 seconds after the leaf 2 has completely opened and give another START g) signal.
- The display shows L^{P} , the control unit has stored the opening and deceleration h) times of both leaves and is now calculating the "stay open" time
- Give a START signals to stop calculating the "stay open" time and start the i) closing cycle.
- When the closing cycle has completely finished, the control unit automatically exits from the sequential programming process and all the working times have been saved.



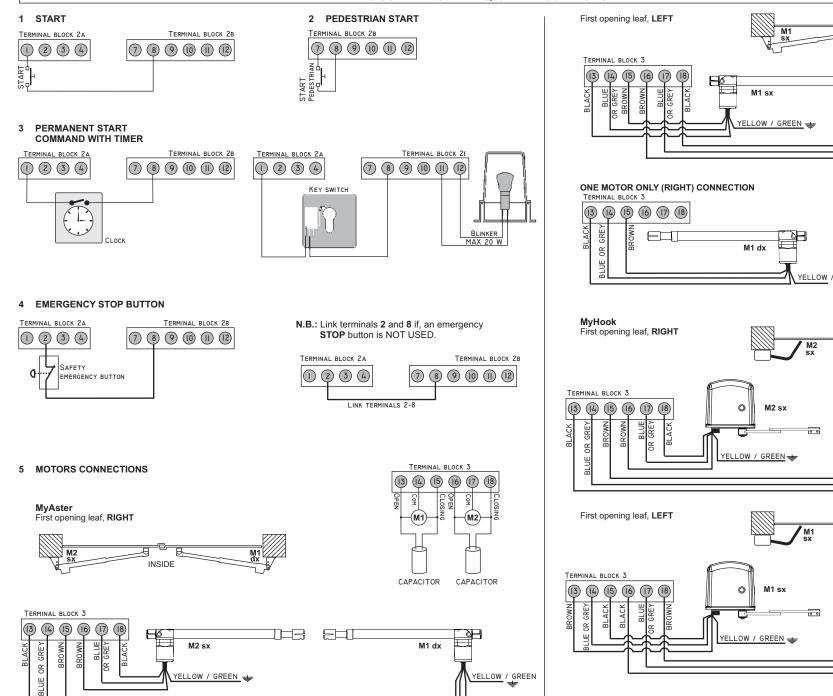


TERMINAL BLOCK CONNECTIONS

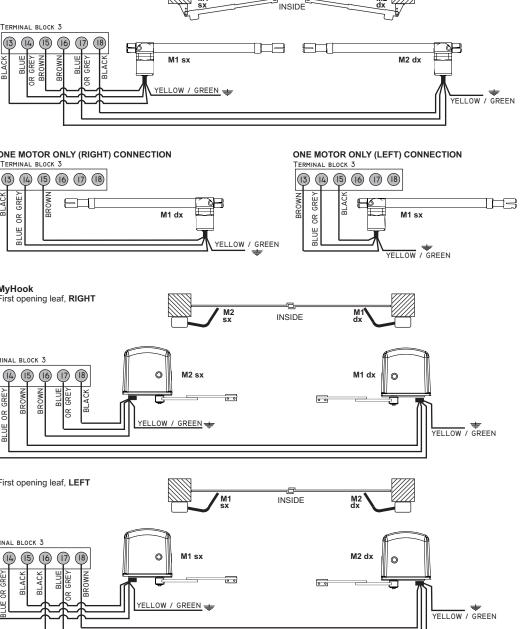
All the connections must be done without power supply.

EARTH TERMINAL BLOCK CONNECTIONS Connect the yellow/green network cable and the yellow/green motor cables to earth terminals A B C.

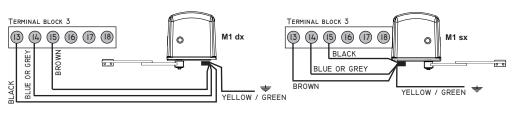
1-8	Start control normally open (NA) for button, key selector, radio receiver or Timer clock connections.
	The Start control starts the programmed running cycle.
2-8	Stop control normally closed (NC). Emergency button.
	When pressed the gate stops immediately.
	In Opening phase: at the first impulse the gate closes. Break-time: at the first impulse the gate closes
	In Closing phase: at the first impulse the gate opens.
	If temporarily the Stop contact is not used, link terminal 2 with terminal 8.
3-8	Input of one safety photocell in closing phase.
	Input of safety rubber edges and of safety photocell in closing phase.
	Input of several safety photocells in closing phase.
	The receiver contacts must be connected in series. Normally closed (NC).
	In opening phase: does not work
	In closing phase: Stop, break-time for 2 seconds, opening phase again.
	If temporarily the photocell contacts are not used, link terminal 3 with terminal 9.
3-9	Input only for safety rubber edges in closing phase.
	The contacts must be connected in series if there is more than one safety rubber edge.
	Normally closed (NC).
	In opening phase: does not work.
	In closing phase: Stop, break-time for 2 seconds, opening phase again.
4-8	Input for safety photocells in opening phase (for swing gate).
	Normally closed (NC).
	In opening phase: Stops until the obstacle has not been removed
	In closing phase: Stops and changes direction when the obstacle has been removed
	If you also want to connect the safety rubber edges, you must connect in series their contacts with the photocell ones.
	If temporarily the photocell contacts are not used, link terminal 4 with terminal 9.
4-9	Input for safety rubber edges in opening phase (for swing gate).
	Normally closed (NC).
	In opening phase: Stops until the obstacle has not been removed
	In closing phase: Stops and changes direction when the obstacle has been removed
	The contacts should be connected in series.
7-8	Pedestrian start input. Normally open (NA).
8-10	Output for photocell receiver power supply.
	Output for extra 24V dc accessories power supply.
	With all Standard accessories included 100 m A are still available for extra accessories.
	Output for photocell transmitter power supply.

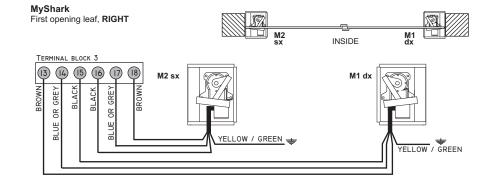

TERMINAL BLOCK 3 CONNECTIONS

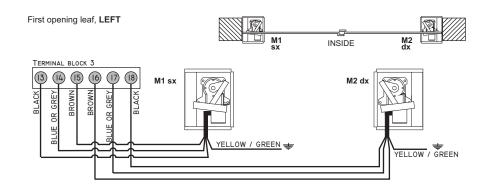
	Motor M1- output Leaf that opens firstly and that delays in closing phase. In case of a gate of one single leaf connect the motor to output M1, select parameter with push button C. CAPACITOR between terminal 13 and 15	$P \ 5$ on SI, confirm with $\ 5 \ U$ and save
16-17-18	Motor M2- output Leaf that opens secondly. CAPACITOR between terminal 16 and 18	

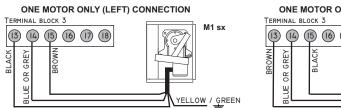

TERMINAL BLOCK 4 CONNECTIONS

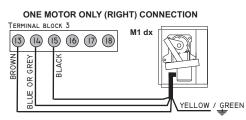
19-20 Power input 230-240 Vac - 50/60 Hz. (19=Neutral - 20=phase)

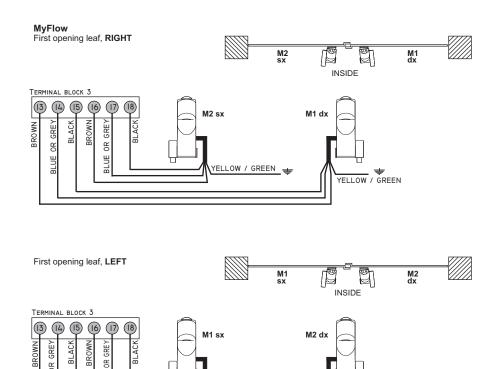



÷

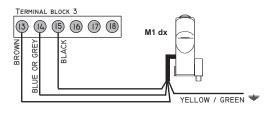





ONE MOTOR ONLY (LEFT) CONNECTION

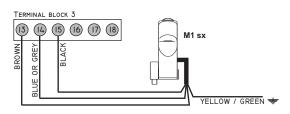


YELLOW / GREEN

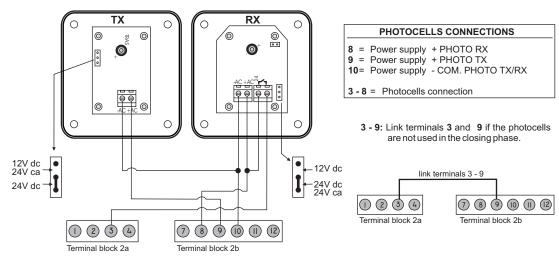

÷ YELLOW / GREEN

ONE MOTOR ONLY (RIGHT) CONNECTION

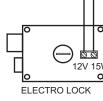
щ

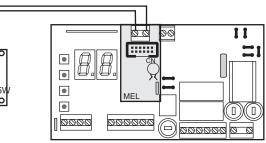

OR

BLUE

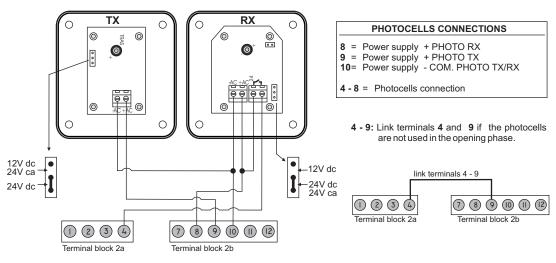


Ъ


ONE MOTOR ONLY (LEFT) CONNECTION



6 CONNECTING PHOTOCELL IN CLOSING PHASE



- 7 ELECTRO-LOCK INTERFACE BOARD(MEL)
 - IF YOU WANT TO CONNECT THE MEL INTO CN • CONNECT THE ELECTRO LOCK
 - CHANGE THE PARAMETERS P() P | AND L [

CONNECTING PHOTOCELL IN OPENING PHASE

